
 Operating System Concepts

 1

Lesson 13

Objectives

 Background

 The Critical-Section Problem

 Conditions for solution of critical section problem

 Algorithms for solution two process

Background

 Concurrent access to shared data may result in data inconsistency.

 Maintaining data consistency requires mechanisms to ensure the orderly

execution of cooperating processes.

 Shared-memory solution to bounded-buffer problem (Chapter 4) allows at most

n – 1 items in buffer at the same time. A solution, where all N buffers are used is

not simple.

 Suppose that we modify the producer-consumer code by adding a variable

counter, initialized to 0 and incremented each time a new item is added to the

buffer, and decremented each time an item deleted from buffer.

 So the statements

Counter++;Counter--; must be performed atomically. Atomic operation means an

operation that completes in its entirety without interruption.

 The statement “count++” may be implemented in machine language as:

register1 = counter

register1 = register1 + 1

counter = register1

 The statement “count—” may be implemented as:

register2 = counter

register2 = register2 – 1

counter = register2

 If both the producer and consumer attempt to update the buffer concurrently, the

assembly language statements may get interleaved.

 Interleaving depends upon how the producer and consumer processes are

scheduled.

 Assume counter is initially 5. One interleaving of statements is:

 Operating System Concepts

 2

producer: register1 = counter (register1 = 5)

producer: register1 = register1 + 1 (register1 = 6)

consumer: register2 = counter (register2 = 5)

consumer: register2 = register2 – 1 (register2 = 4)

producer: counter = register1 (counter = 6)

consumer: counter = register2 (counter = 4)

 The value of count may be either 4 or 6, where the correct result should be 5.

Race condition: The situation where several processes access – and manipulate shared

data concurrently. The final value of the shared data depends upon which process finishes

last. To prevent race conditions, concurrent processes must be synchronized.

The Critical Section Problem

 n processes all competing to use some shared data

 Each process has a code segment, called critical section, in which the shared data

is accessed.

 Problem – ensure that when one process is executing in its critical section, no

other process is allowed to execute in its critical section.

Conditions for Solution of Critical Section Problem

1. Mutual Exclusion. If process Pi is executing in its critical section, then no other

processes can be executing in their critical sections.

2. Progress. If no process is executing in its critical section and there exist some

processes that wish to enter their critical section, then the selection of the processes that

will enter the critical section next cannot be postponed indefinitely.

3. Bounded Waiting. A bound must exist on the number of times that other processes are

allowed to enter their critical sections after a process has made a request to enter its

.critical section and before that request is granted.

_ Assume that each process executes at a nonzero speed

_ No assumption concerning relative speed of the n processes.

Two Process Solution

Initial Approach

 Only 2 processes, P0 and P1

 General structure of process Pi (other process Pj)
do {

entry section

critical section

 Operating System Concepts

 3

exit section

reminder section

} while (1);

 Processes may share some common variables to synchronize their actions.

Algorithm 1

 Shared variables:

int turn;

initially turn = 0

turn - i _ Pi can enter its critical section

 Process Pi
do {

while (turn != i) ;

critical section

turn = j;

reminder section

} while (1);

 Satisfies mutual exclusion, but not progress

Algorithm 2

 Shared variables

boolean flag[2];

initially flag [0] = flag [1] = false.

flag [i] = true _ Pi ready to enter its critical section

 Process Pi
do {

flag[i] := true;

while (flag[j]) ;

critical section

flag [i] = false;

remainder section

} while (1);

 Satisfies mutual exclusion, but not progress requirement.

Algorithm 3

 Combined shared variables of algorithms 1 and 2.

 Process Pi
do {

flag [i]:= true;

turn = j;

while (flag [j] and turn = j) ;

critical section

flag [i] = false;

remainder section

} while (1);

 Meets all three requirements; solves the critical-section problem for two

processes.

